/* * Copyright (c) 2002-@year@, University of Maryland * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted provided * that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of conditions * and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of conditions * and the following disclaimer in the documentation and/or other materials provided with the * distribution. * * Neither the name of the University of Maryland nor the names of its contributors may be used to * endorse or promote products derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Piccolo was written at the Human-Computer Interaction Laboratory www.cs.umd.edu/hcil by Jesse Grosjean * under the supervision of Ben Bederson. The Piccolo website is www.cs.umd.edu/hcil/piccolo. */ package edu.umd.cs.piccolo; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.GraphicsConfiguration; import java.awt.GraphicsEnvironment; import java.awt.Image; import java.awt.Paint; import java.awt.Transparency; import java.awt.geom.AffineTransform; import java.awt.geom.Dimension2D; import java.awt.geom.NoninvertibleTransformException; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import java.awt.image.BufferedImage; import java.awt.print.Book; import java.awt.print.PageFormat; import java.awt.print.Paper; import java.awt.print.Printable; import java.awt.print.PrinterJob; import java.beans.PropertyChangeEvent; import java.beans.PropertyChangeListener; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Enumeration; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import javax.swing.event.EventListenerList; import javax.swing.event.SwingPropertyChangeSupport; import javax.swing.text.MutableAttributeSet; import javax.swing.text.SimpleAttributeSet; import edu.umd.cs.piccolo.activities.PActivity; import edu.umd.cs.piccolo.activities.PColorActivity; import edu.umd.cs.piccolo.activities.PInterpolatingActivity; import edu.umd.cs.piccolo.activities.PTransformActivity; import edu.umd.cs.piccolo.event.PInputEventListener; import edu.umd.cs.piccolo.util.PAffineTransform; import edu.umd.cs.piccolo.util.PBounds; import edu.umd.cs.piccolo.util.PNodeFilter; import edu.umd.cs.piccolo.util.PObjectOutputStream; import edu.umd.cs.piccolo.util.PPaintContext; import edu.umd.cs.piccolo.util.PPickPath; import edu.umd.cs.piccolo.util.PUtil; /** * <b>PNode</b> is the central abstraction in Piccolo. All objects that are * visible on the screen are instances of the node class. All nodes may have * other "child" nodes added to them. * <p> * See edu.umd.piccolo.examples.NodeExample.java for demonstrations of how nodes * can be used and how new types of nodes can be created. * <P> * @version 1.0 * @author Jesse Grosjean */ public class PNode implements Cloneable, Serializable, Printable { private static final long serialVersionUID = -5710973444775892582L; //ORIG private static final long serialVersionUID = -5737613834659240286L; /** * The property name that identifies a change in this node's client * propertie (see {@link #getClientProperty getClientProperty}). In * an property change event the new value will be a reference to the map of * client properties but old value will always be null. */ public static final String PROPERTY_CLIENT_PROPERTIES = "clientProperties"; public static final int PROPERTY_CODE_CLIENT_PROPERTIES = 1 << 0; /** * The property name that identifies a change of this node's bounds (see * {@link #getBounds getBounds}, {@link #getBoundsReference * getBoundsReference}). In any property change event the new value will be * a reference to this node's bounds, but old value will always be null. */ public static final String PROPERTY_BOUNDS = "bounds"; public static final int PROPERTY_CODE_BOUNDS = 1 << 1; /** * The property name that identifies a change of this node's full bounds * (see {@link #getFullBounds getFullBounds}, {@link #getFullBoundsReference * getFullBoundsReference}). In any property change event the new value will * be a reference to this node's full bounds cache, but old value will * always be null. */ public static final String PROPERTY_FULL_BOUNDS = "fullBounds"; public static final int PROPERTY_CODE_FULL_BOUNDS = 1 << 2; /** * The property name that identifies a change of this node's transform (see * {@link #getTransform getTransform}, {@link #getTransformReference * getTransformReference}). In any property change event the new value will * be a reference to this node's transform, but old value will always be * null. */ public static final String PROPERTY_TRANSFORM = "transform"; public static final int PROPERTY_CODE_TRANSFORM = 1 << 3; /** * The property name that identifies a change of this node's visibility (see * {@link #getVisible getVisible}). Both old value and new value will be * null in any property change event. */ public static final String PROPERTY_VISIBLE = "visible"; public static final int PROPERTY_CODE_VISIBLE = 1 << 4; /** * The property name that identifies a change of this node's paint (see * {@link #getPaint getPaint}). Both old value and new value will be set * correctly in any property change event. */ public static final String PROPERTY_PAINT = "paint"; public static final int PROPERTY_CODE_PAINT = 1 << 5; /** * The property name that identifies a change of this node's transparency * (see {@link #getTransparency getTransparency}). Both old value and new * value will be null in any property change event. */ public static final String PROPERTY_TRANSPARENCY = "transparency"; public static final int PROPERTY_CODE_TRANSPARENCY = 1 << 6; /** * The property name that identifies a change of this node's pickable status * (see {@link #getPickable getPickable}). Both old value and new value will * be null in any property change event. */ public static final String PROPERTY_PICKABLE = "pickable"; public static final int PROPERTY_CODE_PICKABLE = 1 << 7; /** * The property name that identifies a change of this node's children * pickable status (see {@link #getChildrenPickable getChildrenPickable}). * Both old value and new value will be null in any property change event. */ public static final String PROPERTY_CHILDREN_PICKABLE = "childrenPickable"; public static final int PROPERTY_CODE_CHILDREN_PICKABLE = 1 << 8; /** * The property name that identifies a change in the set of this node's direct children * (see {@link #getChildrenReference getChildrenReference}, {@link #getChildrenIterator getChildrenIterator}). * In any property change event the new value will be a reference to this node's children, * but old value will always be null. */ public static final String PROPERTY_CHILDREN = "children"; public static final int PROPERTY_CODE_CHILDREN = 1 << 9; /** * The property name that identifies a change of this node's parent * (see {@link #getParent getParent}). * Both old value and new value will be set correctly in any property change event. */ public static final String PROPERTY_PARENT = "parent"; public static final int PROPERTY_CODE_PARENT = 1 << 10; private static final PBounds TEMP_REPAINT_BOUNDS = new PBounds(); /** * The single scene graph delegate that recives low level node events. */ public static PSceneGraphDelegate SCENE_GRAPH_DELEGATE = null; /** * <b>PSceneGraphDelegate</b> is an interface to recive low level node events. It together * with PNode.SCENE_GRAPH_DELEGATE gives Piccolo users an efficient way to learn about * low level changes in Piccolo's scene graph. Most users will not need to use this. */ public interface PSceneGraphDelegate { public void nodePaintInvalidated(PNode node); public void nodeFullBoundsInvalidated(PNode node); } private transient PNode parent; private List<PNode> children; private PBounds bounds; private PAffineTransform transform; private Paint paint; private float transparency; private MutableAttributeSet clientProperties; private PBounds fullBoundsCache; private int propertyChangeParentMask = 0; private transient SwingPropertyChangeSupport changeSupport; private transient EventListenerList listenerList; private boolean pickable; private boolean childrenPickable; private boolean visible; private boolean childBoundsVolatile; private boolean paintInvalid; private boolean childPaintInvalid; private boolean boundsChanged; private boolean fullBoundsInvalid; private boolean childBoundsInvalid; private boolean occluded; /** * Constructs a new PNode. * <P> * By default a node's paint is null, and bounds are empty. These values * must be set for the node to show up on the screen once it's added to * a scene graph. */ public PNode() { bounds = new PBounds(); fullBoundsCache = new PBounds(); transparency = 1.0f; pickable = true; childrenPickable = true; visible = true; } //**************************************************************** // Animation - Methods to animate this node. // // Note that animation is implemented by activities (PActivity), // so if you need more control over your animation look at the // activities package. Each animate method creates an animation that // will animate the node from its current state to the new state // specified over the given duration. These methods will try to // automatically schedule the new activity, but if the node does not // descend from the root node when the method is called then the // activity will not be scheduled and you must schedule it manually. //**************************************************************** /** * Animate this node's bounds from their current location when the activity * starts to the specified bounds. If this node descends from the root then * the activity will be scheduled, else the returned activity should be * scheduled manually. If two different transform activities are scheduled * for the same node at the same time, they will both be applied to the * node, but the last one scheduled will be applied last on each frame, so * it will appear to have replaced the original. Generally you will not want * to do that. Note this method animates the node's bounds, but does not change * the node's transform. Use animateTransformToBounds() to animate the node's * transform instead. * * @param duration amount of time that the animation should take * @return the newly scheduled activity */ public PInterpolatingActivity animateToBounds(double x, double y, double width, double height, long duration) { if (duration == 0) { setBounds(x, y, width, height); return null; } else { final PBounds dst = new PBounds(x, y, width, height); PInterpolatingActivity ta = new PInterpolatingActivity(duration, PUtil.DEFAULT_ACTIVITY_STEP_RATE) { private PBounds src; protected void activityStarted() { src = getBounds(); startResizeBounds(); super.activityStarted(); } public void setRelativeTargetValue(float zeroToOne) { PNode.this.setBounds(src.x + (zeroToOne * (dst.x - src.x)), src.y + (zeroToOne * (dst.y - src.y)), src.width + (zeroToOne * (dst.width - src.width)), src.height + (zeroToOne * (dst.height - src.height))); } protected void activityFinished() { super.activityFinished(); endResizeBounds(); } }; addActivity(ta); return ta; } } /** * Animate this node from it's current transform when the activity starts * a new transform that will fit the node into the given bounds. If this * node descends from the root then the activity will be scheduled, else * the returned activity should be scheduled manually. If two different * transform activities are scheduled for the same node at the same time, * they will both be applied to the node, but the last one scheduled will be * applied last on each frame, so it will appear to have replaced the original. * Generally you will not want to do that. Note this method animates the node's * transform, but does not directly change the node's bounds rectangle. Use * animateToBounds() to animate the node's bounds rectangle instead. * * @param duration amount of time that the animation should take * @return the newly scheduled activity */ public PTransformActivity animateTransformToBounds(double x, double y, double width, double height, long duration) { PAffineTransform t = new PAffineTransform(); t.setToScale(width / getWidth(), height / getHeight()); double scale = t.getScale(); t.setOffset(x - (getX() * scale), y - (getY() * scale)); return animateToTransform(t, duration); } /** * Animate this node's transform from its current location when the * activity starts to the specified location, scale, and rotation. If this * node descends from the root then the activity will be scheduled, else the * returned activity should be scheduled manually. If two different * transform activities are scheduled for the same node at the same time, * they will both be applied to the node, but the last one scheduled will be * applied last on each frame, so it will appear to have replaced the * original. Generally you will not want to do that. * * @param duration amount of time that the animation should take * @param theta final theta value (in radians) for the animation * @return the newly scheduled activity */ public PTransformActivity animateToPositionScaleRotation(double x, double y, double scale, double theta, long duration) { PAffineTransform t = getTransform(); t.setOffset(x, y); t.setScale(scale); t.setRotation(theta); return animateToTransform(t, duration); } /** * Animate this node's transform from its current values when the activity * starts to the new values specified in the given transform. If this node * descends from the root then the activity will be scheduled, else the * returned activity should be scheduled manually. If two different * transform activities are scheduled for the same node at the same time, * they will both be applied to the node, but the last one scheduled will be * applied last on each frame, so it will appear to have replaced the * original. Generally you will not want to do that. * * @param destTransform the final transform value * @param duration amount of time that the animation should take * @return the newly scheduled activity */ public PTransformActivity animateToTransform(AffineTransform destTransform, long duration) { if (duration == 0) { setTransform(destTransform); return null; } else { PTransformActivity.Target t = new PTransformActivity.Target() { public void setTransform(AffineTransform aTransform) { PNode.this.setTransform(aTransform); } public void getSourceMatrix(double[] aSource) { PNode.this.getTransformReference(true).getMatrix(aSource); } }; PTransformActivity ta = new PTransformActivity(duration, PUtil.DEFAULT_ACTIVITY_STEP_RATE, t, destTransform); addActivity(ta); return ta; } } /** * Animate this node's color from its current value to the new value * specified. This meathod assumes that this nodes paint property is of * type color. If this node descends from the root then the activity will be * scheduled, else the returned activity should be scheduled manually. If * two different color activities are scheduled for the same node at the * same time, they will both be applied to the node, but the last one * scheduled will be applied last on each frame, so it will appear to have * replaced the original. Generally you will not want to do that. * * @param destColor final color value. * @param duration amount of time that the animation should take * @return the newly scheduled activity */ public PInterpolatingActivity animateToColor(Color destColor, long duration) { if (duration == 0) { setPaint(destColor); return null; } else { PColorActivity.Target t = new PColorActivity.Target() { public Color getColor() { return (Color) getPaint(); } public void setColor(Color color) { setPaint(color); } }; PColorActivity ca = new PColorActivity(duration, PUtil.DEFAULT_ACTIVITY_STEP_RATE, t, destColor); addActivity(ca); return ca; } } /** * Animate this node's transparency from its current value to the * new value specified. Transparency values must range from zero to one. * If this node descends from the root then the activity will be * scheduled, else the returned activity should be scheduled manually. * If two different transparency activities are scheduled for the same * node at the same time, they will both be applied to the node, but the * last one scheduled will be applied last on each frame, so it will appear * to have replaced the original. Generally you will not want to do that. * * @param zeroToOne final transparency value. * @param duration amount of time that the animation should take * @return the newly scheduled activity */ public PInterpolatingActivity animateToTransparency(float zeroToOne, long duration) { if (duration == 0) { setTransparency(zeroToOne); return null; } else { final float dest = zeroToOne; PInterpolatingActivity ta = new PInterpolatingActivity(duration, PUtil.DEFAULT_ACTIVITY_STEP_RATE) { private float source; protected void activityStarted() { source = getTransparency(); super.activityStarted(); } public void setRelativeTargetValue(float zeroToOne) { PNode.this.setTransparency(source + (zeroToOne * (dest - source))); } }; addActivity(ta); return ta; } } /** * Schedule the given activity with the root, note that only scheduled * activities will be stepped. If the activity is successfully added true is * returned, else false. * * @param activity new activity to schedule * @return true if the activity is successfully scheduled. */ public boolean addActivity(PActivity activity) { PRoot r = getRoot(); if (r != null) { return r.addActivity(activity); } return false; } // **************************************************************** // Client Properties - Methods for managing client properties for // this node. // // Client properties provide a way for programmers to attach // extra information to a node without having to subclass it and // add new instance variables. //**************************************************************** /** * Return mutable attributed set of client properites associated with * this node. */ public MutableAttributeSet getClientProperties() { if (clientProperties == null) { clientProperties = new SimpleAttributeSet(); } return clientProperties; } /** * Returns the value of the client attribute with the specified key. Only * attributes added with <code>addAttribute</code> will return * a non-null value. * * @return the value of this attribute or null */ public Object getAttribute(Object key) { if (clientProperties == null || key == null) { return null; } else { return clientProperties.getAttribute(key); } } /** * Add an arbitrary key/value to this node. * <p> * The <code>get/add attribute<code> methods provide access to * a small per-instance attribute set. Callers can use get/add attribute * to annotate nodes that were created by another module. * <p> * If value is null this method will remove the attribute. */ public void addAttribute(Object key, Object value) { if (value == null && clientProperties == null) return; Object oldValue = getAttribute(key); if (value != oldValue) { if (clientProperties == null) { clientProperties = new SimpleAttributeSet(); } if (value == null) { clientProperties.removeAttribute(key); } else { clientProperties.addAttribute(key, value); } if (clientProperties.getAttributeCount() == 0 && clientProperties.getResolveParent() == null) { clientProperties = null; } firePropertyChange(PROPERTY_CODE_CLIENT_PROPERTIES, PROPERTY_CLIENT_PROPERTIES, null, clientProperties); firePropertyChange(PROPERTY_CODE_CLIENT_PROPERTIES, key.toString(), oldValue, value); } } /** * Returns an enumeration of all keys maped to attribute values values. * * @return an Enumeration over attribute keys */ public Enumeration<?> getClientPropertyKeysEnumeration() { if (clientProperties == null) { return PUtil.NULL_ENUMERATION; } else { return clientProperties.getAttributeNames(); } } // convenience methods for attributes public Object getAttribute(Object key, Object def) { Object o = getAttribute(key); return (o == null ? def : o); } public boolean getBooleanAttribute(Object key, boolean def) { Boolean b = (Boolean)getAttribute(key); return (b == null ? def : b.booleanValue()); } public int getIntegerAttribute(Object key, int def) { Number n = (Number)getAttribute(key); return (n == null ? def : n.intValue()); } public double getDoubleAttribute(Object key, double def) { Number n = (Number)getAttribute(key); return (n == null ? def : n.doubleValue()); } /** * @deprecated use getAttribute(Object key)instead. */ public Object getClientProperty(Object key) { return getAttribute(key); } /** * @deprecated use addAttribute(Object key, Object value)instead. */ public void addClientProperty(Object key, Object value) { addAttribute(key, value); } /** * @deprecated use getClientPropertyKeysEnumerator() instead. */ public Iterator<?> getClientPropertyKeysIterator() { final Enumeration<?> enumeration = getClientPropertyKeysEnumeration(); return new Iterator<Object>() { public boolean hasNext() { return enumeration.hasMoreElements(); } public Object next() { return enumeration.nextElement(); } public void remove() { throw new UnsupportedOperationException(); } }; } //**************************************************************** // Copying - Methods for copying this node and its descendants. // Copying is implemened in terms of serialization. //**************************************************************** /** * The copy method copies this node and all of its descendents. Note * that copying is implemented in terms of java serialization. See * the serialization notes for more information. * * @return new copy of this node or null if the node was not serializable */ public Object clone() { try { byte[] ser = PObjectOutputStream.toByteArray(this); return (PNode) new ObjectInputStream(new ByteArrayInputStream(ser)).readObject(); } catch (IOException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } return null; } //**************************************************************** // Coordinate System Conversions - Methods for converting // geometry between this nodes local coordinates and the other // major coordinate systems. // // Each nodes has an affine transform that it uses to define its // own coordinate system. For example if you create a new node and // add it to the canvas it will appear in the upper right corner. Its // coordinate system matches the coordinate system of its parent // (the root node) at this point. But if you move this node by calling // node.translate() the nodes affine transform will be modified and the // node will appear at a different location on the screen. The node // coordinate system no longer matches the coordinate system of its // parent. // // This is useful because it means that the node's methods for // rendering and picking don't need to worry about the fact that // the node has been moved to another position on the screen, they // keep working just like they did when it was in the upper right // hand corner of the screen. // // The problem is now that each node defines its own coordinate // system it is difficult to compare the positions of two node with // each other. These methods are all meant to help solve that problem. // // The terms used in the methods are as follows: // // local - The local or base coordinate system of a node. // parent - The coordinate system of a node's parent // global - The topmost coordinate system, above the root node. // // Normally when comparing the positions of two nodes you will // convert the local position of each node to the global coordinate // system, and then compare the positions in that common coordinate // system. //*************************************************************** /** * Transform the given point from this node's local coordinate system to * its parent's local coordinate system. Note that this will modify the point * parameter. * * @param localPoint point in local coordinate system to be transformed. * @return point in parent's local coordinate system */ public Point2D localToParent(Point2D localPoint) { if (transform == null) return localPoint; return transform.transform(localPoint, localPoint); } /** * Transform the given dimension from this node's local coordinate system to * its parent's local coordinate system. Note that this will modify the dimension * parameter. * * @param localDimension dimension in local coordinate system to be transformed. * @return dimension in parent's local coordinate system */ public Dimension2D localToParent(Dimension2D localDimension) { if (transform == null) return localDimension; return transform.transform(localDimension, localDimension); } /** * Transform the given rectangle from this node's local coordinate system to * its parent's local coordinate system. Note that this will modify the rectangle * parameter. * * @param localRectangle rectangle in local coordinate system to be transformed. * @return rectangle in parent's local coordinate system */ public Rectangle2D localToParent(Rectangle2D localRectangle) { if (transform == null) return localRectangle; return transform.transform(localRectangle, localRectangle); } /** * Transform the given point from this node's parent's local coordinate system to * the local coordinate system of this node. Note that this will modify the point * parameter. * * @param parentPoint point in parent's coordinate system to be transformed. * @return point in this node's local coordinate system */ public Point2D parentToLocal(Point2D parentPoint) { if (transform == null) return parentPoint; try { return transform.inverseTransform(parentPoint, parentPoint); } catch (NoninvertibleTransformException e) { e.printStackTrace(); } return null; } /** * Transform the given dimension from this node's parent's local coordinate system to * the local coordinate system of this node. Note that this will modify the dimension * parameter. * * @param parentDimension dimension in parent's coordinate system to be transformed. * @return dimension in this node's local coordinate system */ public Dimension2D parentToLocal(Dimension2D parentDimension) { if (transform == null) return parentDimension; return transform.inverseTransform(parentDimension, parentDimension); } /** * Transform the given rectangle from this node's parent's local coordinate system to * the local coordinate system of this node. Note that this will modify the rectangle * parameter. * * @param parentRectangle rectangle in parent's coordinate system to be transformed. * @return rectangle in this node's local coordinate system */ public Rectangle2D parentToLocal(Rectangle2D parentRectangle) { if (transform == null) return parentRectangle; return transform.inverseTransform(parentRectangle, parentRectangle); } /** * Transform the given point from this node's local coordinate system to * the global coordinate system. Note that this will modify the point * parameter. * * @param localPoint point in local coordinate system to be transformed. * @return point in global coordinates */ public Point2D localToGlobal(Point2D localPoint) { PNode n = this; while (n != null) { localPoint = n.localToParent(localPoint); n = n.parent; } return localPoint; } /** * Transform the given dimension from this node's local coordinate system to * the global coordinate system. Note that this will modify the dimension * parameter. * * @param localDimension dimension in local coordinate system to be transformed. * @return dimension in global coordinates */ public Dimension2D localToGlobal(Dimension2D localDimension) { PNode n = this; while (n != null) { localDimension = n.localToParent(localDimension); n = n.parent; } return localDimension; } /** * Transform the given rectangle from this node's local coordinate system to * the global coordinate system. Note that this will modify the rectangle * parameter. * * @param localRectangle rectangle in local coordinate system to be transformed. * @return rectangle in global coordinates */ public Rectangle2D localToGlobal(Rectangle2D localRectangle) { PNode n = this; while (n != null) { localRectangle = n.localToParent(localRectangle); n = n.parent; } return localRectangle; } /** * Transform the given point from global coordinates to this node's * local coordinate system. Note that this will modify the point * parameter. * * @param globalPoint point in global coordinates to be transformed. * @return point in this node's local coordinate system. */ public Point2D globalToLocal(Point2D globalPoint) { if (parent != null) { globalPoint = parent.globalToLocal(globalPoint); } return parentToLocal(globalPoint); } /** * Transform the given dimension from global coordinates to this node's * local coordinate system. Note that this will modify the dimension * parameter. * * @param globalDimension dimension in global coordinates to be transformed. * @return dimension in this node's local coordinate system. */ public Dimension2D globalToLocal(Dimension2D globalDimension) { if (parent != null) { globalDimension = parent.globalToLocal(globalDimension); } return parentToLocal(globalDimension); } /** * Transform the given rectangle from global coordinates to this node's * local coordinate system. Note that this will modify the rectangle * parameter. * * @param globalRectangle rectangle in global coordinates to be transformed. * @return rectangle in this node's local coordinate system. */ public Rectangle2D globalToLocal(Rectangle2D globalRectangle) { if (parent != null) { globalRectangle = parent.globalToLocal(globalRectangle); } return parentToLocal(globalRectangle); } /** * Return the transform that converts local coordinates at this node * to the global coordinate system. * * @return The concatenation of transforms from the top node down to this node. */ public PAffineTransform getLocalToGlobalTransform(PAffineTransform dest) { if (parent != null) { dest = parent.getLocalToGlobalTransform(dest); if (transform != null) dest.concatenate(transform); } else { if (dest == null) { dest = getTransform(); } else { if (transform != null) { dest.setTransform(transform); } else { dest.setToIdentity(); } } } return dest; } /** * Return the transform that converts global coordinates * to local coordinates of this node. * * @return The inverse of the concatenation of transforms from the root down to this node. */ public PAffineTransform getGlobalToLocalTransform(PAffineTransform dest) { try { dest = getLocalToGlobalTransform(dest); dest.setTransform(dest.createInverse()); return dest; } catch (NoninvertibleTransformException e) { e.printStackTrace(); } return null; } //**************************************************************** // Event Listeners - Methods for adding and removing event listeners // from a node. // // Here methods are provided to add property change listeners and // input event listeners. The property change listeners are notified // when certain properties of this node change, and the input event // listeners are notified when the nodes receives new key and mouse // events. //**************************************************************** /** * Return the list of event listeners associated with this node. * * @return event listener list or null */ public EventListenerList getListenerList() { return listenerList; } /** * Adds the specified input event listener to receive input events * from this node. * * @param listener the new input listener */ public void addInputEventListener(PInputEventListener listener) { if (listenerList == null) listenerList = new EventListenerList(); getListenerList().add(PInputEventListener.class, listener); } /** * Removes the specified input event listener so that it no longer * receives input events from this node. * * @param listener the input listener to remove */ public void removeInputEventListener(PInputEventListener listener) { if (listenerList == null) return; getListenerList().remove(PInputEventListener.class, listener); if (listenerList.getListenerCount() == 0) { listenerList = null; } } /** * Add a PropertyChangeListener to the listener list. * The listener is registered for all properties. * See the fields in PNode and subclasses that start * with PROPERTY_ to find out which properties exist. * @param listener The PropertyChangeListener to be added */ public void addPropertyChangeListener(PropertyChangeListener listener) { if (changeSupport == null) { changeSupport = new SwingPropertyChangeSupport(this); } changeSupport.addPropertyChangeListener(listener); } /** * Add a PropertyChangeListener for a specific property. The listener * will be invoked only when a call on firePropertyChange names that * specific property. See the fields in PNode and subclasses that start * with PROPERTY_ to find out which properties are supported. * @param propertyName The name of the property to listen on. * @param listener The PropertyChangeListener to be added */ public void addPropertyChangeListener(String propertyName, PropertyChangeListener listener) { if (listener == null) { return; } if (changeSupport == null) { changeSupport = new SwingPropertyChangeSupport(this); } changeSupport.addPropertyChangeListener(propertyName, listener); } /** * Remove a PropertyChangeListener from the listener list. * This removes a PropertyChangeListener that was registered * for all properties. * * @param listener The PropertyChangeListener to be removed */ public void removePropertyChangeListener(PropertyChangeListener listener) { if (changeSupport != null) { changeSupport.removePropertyChangeListener(listener); } } /** * Remove a PropertyChangeListener for a specific property. * * @param propertyName The name of the property that was listened on. * @param listener The PropertyChangeListener to be removed */ public void removePropertyChangeListener(String propertyName, PropertyChangeListener listener) { if (listener == null) { return; } if (changeSupport == null) { return; } changeSupport.removePropertyChangeListener(propertyName, listener); } /** * Return the propertyChangeParentMask that determines which property * change events are forwared to this nodes parent so that its property * change listeners will also be notified. */ public int getPropertyChangeParentMask() { return propertyChangeParentMask; } /** * Set the propertyChangeParentMask that determines which property * change events are forwared to this nodes parent so that its property * change listeners will also be notified. */ public void setPropertyChangeParentMask(int propertyChangeParentMask) { this.propertyChangeParentMask = propertyChangeParentMask; } /** * Report a bound property update to any registered listeners. * No event is fired if old and new are equal and non-null. If the propertyCode * exists in this node's propertyChangeParentMask then a property change event * will also be fired on this nodes parent. * * @param propertyCode The code of the property changed. * @param propertyName The programmatic name of the property that was changed. * @param oldValue The old value of the property. * @param newValue The new value of the property. */ protected void firePropertyChange(int propertyCode, String propertyName, Object oldValue, Object newValue) { PropertyChangeEvent event = null; if (changeSupport != null) { event = new PropertyChangeEvent(this, propertyName, oldValue, newValue); changeSupport.firePropertyChange(event); } if (parent != null && (propertyCode & propertyChangeParentMask) != 0) { if (event == null) event = new PropertyChangeEvent(this, propertyName, oldValue, newValue); parent.fireChildPropertyChange(event, propertyCode); } } /** * Called by child node to forward property change events up the node tree * so that property change listeners registered with this node will be notified * of property changes of its children nodes. For performance reason only propertyCodes * listed in the propertyChangeParentMask are forwarded. * * @param event The property change event containing source node and changed values. * @param propertyCode The code of the property changed. */ protected void fireChildPropertyChange(PropertyChangeEvent event, int propertyCode) { if (changeSupport != null) { changeSupport.firePropertyChange(event); } if (parent != null && (propertyCode & propertyChangeParentMask) != 0) { parent.fireChildPropertyChange(event, propertyCode); } } //**************************************************************** // Bounds Geometry - Methods for setting and querying the bounds // of this node. // // The bounds of a node store the node's position and size in // the nodes local coordinate system. Many node subclasses will need // to override the setBounds method so that they can update their // internal state appropriately. See PPath for an example. // // Since the bounds are stored in the local coordinate system // they WILL NOT change if the node is scaled, translated, or rotated. // // The bounds may be accessed with either getBounds, or // getBoundsReference. The former returns a copy of the bounds // the latter returns a reference to the nodes bounds that should // normally not be modified. If a node is marked as volatile then // it may modify its bounds before returning them from getBoundsReference, // otherwise it may not. //**************************************************************** /** * Return a copy of this node's bounds. These bounds are stored in * the local coordinate system of this node and do not include the * bounds of any of this node's children. */ public PBounds getBounds() { return (PBounds) getBoundsReference().clone(); } /** * Return a direct reference to this node's bounds. These bounds * are stored in the local coordinate system of this node and do * not include the bounds of any of this node's children. The value * returned should not be modified. */ public PBounds getBoundsReference() { return bounds; } /** * Notify this node that you will beging to repeadily call <code>setBounds</code>. * When you are done call <code>endResizeBounds</code> to let the node know that * you are done. */ public void startResizeBounds() { } /** * Notify this node that you have finished a resize bounds sequence. */ public void endResizeBounds() { } public boolean setX(double x) { return setBounds(x, getY(), getWidth(), getHeight()); } public boolean setY(double y) { return setBounds(getX(), y, getWidth(), getHeight()); } public boolean setWidth(double width) { return setBounds(getX(), getY(), width, getHeight()); } public boolean setHeight(double height) { return setBounds(getX(), getY(), getWidth(), height); } /** * Set the bounds of this node to the given value. These bounds * are stored in the local coordinate system of this node. * * @return true if the bounds changed. */ public boolean setBounds(Rectangle2D newBounds) { return setBounds(newBounds.getX(), newBounds.getY(), newBounds.getWidth(), newBounds.getHeight()); } /** * Set the bounds of this node to the given value. These bounds * are stored in the local coordinate system of this node. * * If the width or height is less then or equal to zero then the bound's * emtpy bit will be set to true. * * Subclasses must call the super.setBounds() method. * * @return true if the bounds changed. */ public boolean setBounds(double x, double y, double width, double height) { if (bounds.x != x || bounds.y != y || bounds.width != width || bounds.height != height) { bounds.setRect(x, y, width, height); if (width <= 0 || height <= 0) { bounds.reset(); } internalUpdateBounds(x, y, width, height); invalidatePaint(); signalBoundsChanged(); return true; } // Don't put any invalidating code here or else nodes with volatile bounds will // create a soft infinite loop (calling Swing.invokeLater()) when they validate // their bounds. return false; } /** * Gives nodes a chance to update their internal structure * before bounds changed notifications are sent. When this message * is recived the nodes bounds field will contain the new value. * * See PPath for an example that uses this method. */ protected void internalUpdateBounds(double x, double y, double width, double height) { } /** * Set the empty bit of this bounds to true. */ public void resetBounds() { setBounds(0, 0, 0, 0); } /** * Return the x position (in local coords) of this node's bounds. */ public double getX() { return getBoundsReference().getX(); } /** * Return the y position (in local coords) of this node's bounds. */ public double getY() { return getBoundsReference().getY(); } /** * Return the width (in local coords) of this node's bounds. */ public double getWidth() { return getBoundsReference().getWidth(); } /** * Return the height (in local coords) of this node's bounds. */ public double getHeight() { return getBoundsReference().getHeight(); } /** * Return a copy of the bounds of this node in the global * coordinate system. * * @return the bounds in global coordinate system. */ public PBounds getGlobalBounds() { return (PBounds) localToGlobal(getBounds()); } /** * Center the bounds of this node so that they are centered on the given * point specified on the local coords of this node. Note that this meathod * will modify the nodes bounds, while centerFullBoundsOnPoint will modify * the nodes transform. * * @return true if the bounds changed. */ public boolean centerBoundsOnPoint(double localX, double localY) { double dx = localX - bounds.getCenterX(); double dy = localY - bounds.getCenterY(); return setBounds(bounds.x + dx, bounds.y + dy, bounds.width, bounds.height); } /** * Center the ffull bounds of this node so that they are centered on the * given point specified on the local coords of this nodes parent. Note that * this meathod will modify the nodes transform, while centerBoundsOnPoint * will modify the nodes bounds. */ public void centerFullBoundsOnPoint(double parentX, double parentY) { double dx = parentX - getFullBoundsReference().getCenterX(); double dy = parentY - getFullBoundsReference().getCenterY(); offset(dx, dy); } /** * Return true if this node intersects the given rectangle specified in * local bounds. If the geometry of this node is complex this method can become * expensive, it is therefore recommended that <code>fullIntersects</code> is used * for quick rejects before calling this method. * * @param localBounds the bounds to test for intersection against * @return true if the given rectangle intersects this nodes geometry. */ public boolean intersects(Rectangle2D localBounds) { if (localBounds == null) return true; return getBoundsReference().intersects(localBounds); } //**************************************************************** // Full Bounds - Methods for computing and querying the // full bounds of this node. // // The full bounds of a node store the nodes bounds // together with the union of the bounds of all the // node's descendents. The full bounds are stored in the parent // coordinate system of this node, the full bounds DOES change // when you translate, scale, or rotate this node. // // The full bounds may be accessed with either getFullBounds, or // getFullBoundsReference. The former returns a copy of the full bounds // the latter returns a reference to the node's full bounds that should // not be modified. //**************************************************************** /** * Return a copy of this node's full bounds. These bounds are stored in * the parent coordinate system of this node and they include the * union of this node's bounds and all the bounds of it's descendents. * * @return a copy of this node's full bounds. */ public PBounds getFullBounds() { return (PBounds) getFullBoundsReference().clone(); } /** * Return a reference to this node's full bounds cache. These bounds are * stored in the parent coordinate system of this node and they include the * union of this node's bounds and all the bounds of it's descendents. The bounds * returned by this method should not be modified. * * @return a reference to this node's full bounds cache. */ public PBounds getFullBoundsReference() { validateFullBounds(); return fullBoundsCache; } /** * Compute and return the full bounds of this node. If the dstBounds * parameter is not null then it will be used to return the results instead * of creating a new PBounds. * * @param dstBounds if not null the new bounds will be stored here * @return the full bounds in the parent coordinate system of this node */ public PBounds computeFullBounds(PBounds dstBounds) { PBounds result = getUnionOfChildrenBounds(dstBounds); result.add(getBoundsReference()); localToParent(result); return result; } /** * Compute and return the union of the full bounds of all the * children of this node. If the dstBounds parameter is not null * then it will be used to return the results instead of creating * a new PBounds. * * @param dstBounds if not null the new bounds will be stored here */ public PBounds getUnionOfChildrenBounds(PBounds dstBounds) { if (dstBounds == null) { dstBounds = new PBounds(); } else { dstBounds.resetToZero(); } int count = getChildrenCount(); for (int i = 0; i < count; i++) { if (i < children.size()){ PNode each = children.get(i); dstBounds.add(each.getFullBoundsReference()); } } return dstBounds; } /** * Return a copy of the full bounds of this node in the global * coordinate system. * * @return the full bounds in global coordinate system. */ public PBounds getGlobalFullBounds() { PBounds b = getFullBounds(); if (parent != null) { parent.localToGlobal(b); } return b; } /** * Return true if the full bounds of this node intersects with the * specified bounds. * * @param parentBounds the bounds to test for intersection against (specified in parent's coordinate system) * @return true if this nodes full bounds intersect the given bounds. */ public boolean fullIntersects(Rectangle2D parentBounds) { if (parentBounds == null) return true; return getFullBoundsReference().intersects(parentBounds); } //**************************************************************** // Bounds Damage Management - Methods used to invalidate and validate // the bounds of nodes. //**************************************************************** /** * Return true if this nodes bounds may change at any time. The default * behavior is to return false, subclasses that override this method to * return true should also override getBoundsReference() and compute their * volatile bounds there before returning the reference. * * @return true if this node has volatile bounds */ protected boolean getBoundsVolatile() { return false; } /** * Return true if this node has a child with volatile bounds. * * @return true if this node has a child with volatile bounds */ protected boolean getChildBoundsVolatile() { return childBoundsVolatile; } /** * Set if this node has a child with volatile bounds. This should normally * be managed automatically by the bounds validation process. * * @param childBoundsVolatile true if this node has a descendent with volatile bounds */ protected void setChildBoundsVolatile(boolean childBoundsVolatile) { this.childBoundsVolatile = childBoundsVolatile; } /** * Return true if this node's bounds have recently changed. This flag * will be reset on the next call of validateFullBounds. * * @return true if this node's bounds have changed. */ protected boolean getBoundsChanged() { return boundsChanged; } /** * Set the bounds chnaged flag. This flag * will be reset on the next call of validateFullBounds. * * @param boundsChanged true if this nodes bounds have changed. */ protected void setBoundsChanged(boolean boundsChanged) { this.boundsChanged = boundsChanged; } /** * Return true if the full bounds of this node are invalid. This means that * the full bounds of this node have changed and need to be recomputed. * * @return true if the full bounds of this node are invalid */ protected boolean getFullBoundsInvalid() { return fullBoundsInvalid; } /** * Set the full bounds invalid flag. This flag is set when the full bounds of * this node need to be recomputed as is the case when this node is transformed * or when one of this node's children changes geometry. */ protected void setFullBoundsInvalid(boolean fullBoundsInvalid) { this.fullBoundsInvalid = fullBoundsInvalid; } /** * Return true if one of this node's descendents has invalid bounds. */ protected boolean getChildBoundsInvalid() { return childBoundsInvalid; } /** * Set the flag indicating that one of this node's descendents has * invalid bounds. */ protected void setChildBoundsInvalid(boolean childBoundsInvalid) { this.childBoundsInvalid = childBoundsInvalid; } /** * This method should be called when the bounds of this node are changed. * It invalidates the full bounds of this node, and also notifies each of * this nodes children that their parent's bounds have changed. As a result * of this method getting called this nodes layoutChildren will be called. */ public void signalBoundsChanged() { invalidateFullBounds(); setBoundsChanged(true); firePropertyChange(PROPERTY_CODE_BOUNDS, PROPERTY_BOUNDS, null, bounds); int count = getChildrenCount(); for (int i = 0; i < count; i++) { PNode each = children.get(i); each.parentBoundsChanged(); } } /** * Invalidate this node's layout, so that later * layoutChildren will get called. */ public void invalidateLayout() { invalidateFullBounds(); } /** * A notification that the bounds of this node's parent have changed. */ protected void parentBoundsChanged() { } /** * Invalidates the full bounds of this node, and sets the child bounds invalid flag * on each of this node's ancestors. */ public void invalidateFullBounds() { setFullBoundsInvalid(true); PNode n = parent; while (n != null && !n.getChildBoundsInvalid()) { n.setChildBoundsInvalid(true); n = n.parent; } if (SCENE_GRAPH_DELEGATE != null) SCENE_GRAPH_DELEGATE.nodeFullBoundsInvalidated(this); } /** * This method is called to validate the bounds of this node and all of its * descendents. It returns true if this nodes bounds or the bounds of any of its * descendents are marked as volatile. * * @return true if this node or any of its descendents have volatile bounds */ public boolean validateFullBounds() { boolean boundsVolatile = getBoundsVolatile(); // 1. Only compute new bounds if invalid flags are set. if (fullBoundsInvalid || childBoundsInvalid || boundsVolatile || childBoundsVolatile) { // 2. If my bounds are volatile and they have not been changed then signal a change. // For most cases this will // do nothing, but if a nodes bounds depend on its model, then validate bounds has the // responsibility of making the bounds match the models value. For example PPaths // validateBounds method makes sure that the bounds are equal to the bounds of the GeneralPath // model. if (boundsVolatile && !boundsChanged) { signalBoundsChanged(); } // 3. If the bounds of on of my decendents are invalidate then validate the bounds of all // of my children. if (childBoundsInvalid || childBoundsVolatile) { childBoundsVolatile = false; int count = getChildrenCount(); for (int i = 0; i < count; i++) { if (i < children.size()) { PNode each = children.get(i); childBoundsVolatile |= each.validateFullBounds(); } } } // 4. Now that my children's bounds are valid and my own bounds are valid run any // layout algorithm here. Note that if you try to layout volatile children piccolo // will most likely start a "soft" infinite loop. It won't freeze your program, but // it will make an infinite number of calls to SwingUtilities invoke later. You don't // want to do that. layoutChildren(); // 5. If the full bounds cache is invalid then recompute the full bounds cache // here after our own bounds and the children's bounds have been computed above. if (fullBoundsInvalid) { double oldX = fullBoundsCache.x; double oldY = fullBoundsCache.y; double oldWidth = fullBoundsCache.width; double oldHeight = fullBoundsCache.height; boolean oldEmpty = fullBoundsCache.isEmpty(); // 6. This will call getFullBoundsReference on all of the children. So if the above // layoutChildren method changed the bounds of any of the children they will be // validated again here. fullBoundsCache = computeFullBounds(fullBoundsCache); boolean fullBoundsChanged = fullBoundsCache.x != oldX || fullBoundsCache.y != oldY || fullBoundsCache.width != oldWidth || fullBoundsCache.height != oldHeight || fullBoundsCache.isEmpty() != oldEmpty; // 7. If the new full bounds cache differs from the previous cache then // tell our parent to invalidate their full bounds. This is how bounds changes // deep in the tree percolate up. if (fullBoundsChanged) { if (parent != null) parent.invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_FULL_BOUNDS, PROPERTY_FULL_BOUNDS, null, fullBoundsCache); // 8. If our paint was invalid make sure to repaint our old full bounds. The // new bounds will be computed later in the validatePaint pass. if (paintInvalid && !oldEmpty) { TEMP_REPAINT_BOUNDS.setRect(oldX, oldY, oldWidth, oldHeight); repaintFrom(TEMP_REPAINT_BOUNDS, this); } } } // 9. Clear the invalid bounds flags. boundsChanged = false; fullBoundsInvalid = false; childBoundsInvalid = false; } return boundsVolatile || childBoundsVolatile; } /** * Nodes that apply layout constraints to their children should override * this method and do the layout there. */ protected void layoutChildren() { } //**************************************************************** // Node Transform - Methods to manipulate the node's transform. // // Each node has a transform that is used to define the nodes // local coordinate system. IE it is applied before picking and // rendering the node. // // The usual way to move nodes about on the canvas is to manipulate // this transform, as opposed to changing the bounds of the // node. // // Since this transform defines the local coordinate system of this // node the following methods with affect the global position both // this node and all of its descendents. //**************************************************************** /** * Returns the rotation applied by this node's transform in radians. * This rotation affects this node and all its descendents. The value * returned will be between 0 and 2pi radians. * * @return rotation in radians. */ public double getRotation() { if (transform == null) return 0; return transform.getRotation(); } /** * Sets the rotation of this nodes transform in radians. This will * affect this node and all its descendents. * * @param theta rotation in radians */ public void setRotation(double theta) { rotate(theta - getRotation()); } /** * Rotates this node by theta (in radians) about the 0,0 point. * This will affect this node and all its descendents. * * @param theta the amount to rotate by in radians */ public void rotate(double theta) { rotateAboutPoint(theta, 0, 0); } /** * Rotates this node by theta (in radians), and then translates the node so * that the x, y position of its fullBounds stays constant. * * @param theta the amount to rotate by in radians */ public void rotateInPlace(double theta) { PBounds b = getFullBoundsReference(); double px = b.x; double py = b.y; rotateAboutPoint(theta, 0, 0); b = getFullBoundsReference(); offset(px - b.x, py - b.y); } /** * Rotates this node by theta (in radians) about the given * point. This will affect this node and all its descendents. * * @param theta the amount to rotate by in radians */ public void rotateAboutPoint(double theta, Point2D point) { rotateAboutPoint(theta, point.getX(), point.getY()); } /** * Rotates this node by theta (in radians) about the given * point. This will affect this node and all its descendents. * * @param theta the amount to rotate by in radians */ public void rotateAboutPoint(double theta, double x, double y) { getTransformReference(true).rotate(theta, x, y); invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } /** * Return the total amount of rotation applied to this node by its own * transform together with the transforms of all its ancestors. The value * returned will be between 0 and 2pi radians. * * @return the total amount of rotation applied to this node in radians */ public double getGlobalRotation() { return getLocalToGlobalTransform(null).getRotation(); } /** * Set the global rotation (in radians) of this node. This is implemented by * rotating this nodes transform the required amount so that the nodes * global rotation is as requested. * * @param theta the amount to rotate by in radians relative to the global coord system. */ public void setGlobalRotation(double theta) { if (parent != null) { setRotation(theta - parent.getGlobalRotation()); } else { setRotation(theta); } } /** * Return the scale applied by this node's transform. The scale is * effecting this node and all its descendents. * * @return scale applied by this nodes transform. */ public double getScale() { if (transform == null) return 1; return transform.getScale(); } /** * Set the scale of this node's transform. The scale will * affect this node and all its descendents. * * @param scale the scale to set the transform to */ public void setScale(double scale) { if (scale == 0) throw new RuntimeException("Can't set scale to 0"); scale(scale / getScale()); } /** * Scale this nodes transform by the given amount. This will affect this * node and all of its descendents. * * @param scale the amount to scale by */ public void scale(double scale) { scaleAboutPoint(scale, 0, 0); } /** * Scale this nodes transform by the given amount about the specified * point. This will affect this node and all of its descendents. * * @param scale the amount to scale by * @param point the point to scale about */ public void scaleAboutPoint(double scale, Point2D point) { scaleAboutPoint(scale, point.getX(), point.getY()); } /** * Scale this nodes transform by the given amount about the specified * point. This will affect this node and all of its descendents. * * @param scale the amount to scale by */ public void scaleAboutPoint(double scale, double x, double y) { getTransformReference(true).scaleAboutPoint(scale, x, y); invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } /** * Return the global scale that is being applied to this node by its transform * together with the transforms of all its ancestors. */ public double getGlobalScale() { return getLocalToGlobalTransform(null).getScale(); } /** * Set the global scale of this node. This is implemented by scaling * this nodes transform the required amount so that the nodes global scale * is as requested. * * @param scale the desired global scale */ public void setGlobalScale(double scale) { if (parent != null) { setScale(scale / parent.getGlobalScale()); } else { setScale(scale); } } public double getXOffset() { if (transform == null) return 0; return transform.getTranslateX(); } public double getYOffset() { if (transform == null) return 0; return transform.getTranslateY(); } /** * Return the offset that is being applied to this node by its * transform. This offset effects this node and all of its descendents * and is specified in the parent coordinate system. This returns the * values that are in the m02 and m12 positions in the affine transform. * * @return a point representing the x and y offset */ public Point2D getOffset() { if (transform == null) return new Point2D.Double(); return new Point2D.Double(transform.getTranslateX(), transform.getTranslateY()); } /** * Set the offset that is being applied to this node by its * transform. This offset effects this node and all of its descendents and * is specified in the nodes parent coordinate system. This directly sets the values * of the m02 and m12 positions in the affine transform. Unlike "PNode.translate()" it * is not effected by the transforms scale. * * @param point a point representing the x and y offset */ public void setOffset(Point2D point) { setOffset(point.getX(), point.getY()); } /** * Set the offset that is being applied to this node by its * transform. This offset effects this node and all of its descendents and * is specified in the nodes parent coordinate system. This directly sets the values * of the m02 and m12 positions in the affine transform. Unlike "PNode.translate()" it * is not effected by the transforms scale. * * @param x amount of x offset * @param y amount of y offset */ public void setOffset(double x, double y) { getTransformReference(true).setOffset(x, y); invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } /** * Offset this node relative to the parents coordinate system, and is NOT * effected by this nodes current scale or rotation. This is implemented * by directly adding dx to the m02 position and dy to the m12 position in the * affine transform. */ public void offset(double dx, double dy) { getTransformReference(true); setOffset(transform.getTranslateX() + dx, transform.getTranslateY() + dy); } /** * Translate this node's transform by the given amount, using the standard affine * transform translate method. This translation effects this node and all of its * descendents. */ public void translate(double dx, double dy) { getTransformReference(true).translate(dx, dy); invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } /** * Return the global translation that is being applied to this node by its transform * together with the transforms of all its ancestors. */ public Point2D getGlobalTranslation() { Point2D p = getOffset(); if (parent != null) { parent.localToGlobal(p); } return p; } /** * Set the global translation of this node. This is implemented by translating * this nodes transform the required amount so that the nodes global scale * is as requested. * * @param globalPoint the desired global translation */ public void setGlobalTranslation(Point2D globalPoint) { if (parent != null) { parent.getGlobalToLocalTransform(null).transform(globalPoint, globalPoint); } setOffset(globalPoint); } /** * Transform this nodes transform by the given transform. * * @param aTransform the transform to apply. */ public void transformBy(AffineTransform aTransform) { getTransformReference(true).concatenate(aTransform); invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } /** * Linearly interpolates between a and b, based on t. * Specifically, it computes lerp(a, b, t) = a + t*(b - a). * This produces a result that changes from a (when t = 0) to b (when t = 1). * * @param a from point * @param b to Point * @param t variable 'time' parameter */ static public double lerp(double t, double a, double b) { return (a + t * (b - a)); } /** * This will calculate the necessary transform in order to make this * node appear at a particular position relative to the * specified bounding box. The source point specifies a point in the * unit square (0, 0) - (1, 1) that represents an anchor point on the * corresponding node to this transform. The destination point specifies * an anchor point on the reference node. The position method then * computes the transform that results in transforming this node so that * the source anchor point coincides with the reference anchor * point. This can be useful for layout algorithms as it is * straightforward to position one object relative to another. * <p> * For example, If you have two nodes, A and B, and you call * <PRE> * Point2D srcPt = new Point2D.Double(1.0, 0.0); * Point2D destPt = new Point2D.Double(0.0, 0.0); * A.position(srcPt, destPt, B.getGlobalBounds(), 750, null); * </PRE> * The result is that A will move so that its upper-right corner is at * the same place as the upper-left corner of B, and the transition will * be smoothly animated over a period of 750 milliseconds. * @param srcPt The anchor point on this transform's node (normalized to a unit square) * @param destPt The anchor point on destination bounds (normalized to a unit square) * @param destBounds The bounds (in global coordinates) used to calculate this transform's node * @param millis Number of milliseconds over which to perform the animation */ public void position(Point2D srcPt, Point2D destPt, Rectangle2D destBounds, int millis) { double srcx, srcy; double destx, desty; double dx, dy; Point2D pt1, pt2; if (parent != null) { // First compute translation amount in global coordinates Rectangle2D srcBounds = getGlobalFullBounds(); srcx = lerp(srcPt.getX(), srcBounds.getX(), srcBounds.getX() + srcBounds.getWidth()); srcy = lerp(srcPt.getY(), srcBounds.getY(), srcBounds.getY() + srcBounds.getHeight()); destx = lerp(destPt.getX(), destBounds.getX(), destBounds.getX() + destBounds.getWidth()); desty = lerp(destPt.getY(), destBounds.getY(), destBounds.getY() + destBounds.getHeight()); // Convert vector to local coordinates pt1 = new Point2D.Double(srcx, srcy); globalToLocal(pt1); pt2 = new Point2D.Double(destx, desty); globalToLocal(pt2); dx = (pt2.getX() - pt1.getX()); dy = (pt2.getY() - pt1.getY()); // Finally, animate change PAffineTransform at = new PAffineTransform(getTransformReference(true)); at.translate(dx, dy); animateToTransform(at, millis); } } /** * Return a copy of the transform associated with this node. * * @return copy of this node's transform */ public PAffineTransform getTransform() { if (transform == null) { return new PAffineTransform(); } else { return (PAffineTransform) transform.clone(); } } /** * Return a reference to the transform associated with this node. * This returned transform should not be modified. PNode transforms are * created lazily when needed. If you access the transform reference * before the transform has been created it may return null. The * createNewTransformIfNull parameter is used to specify that the PNode * should create a new transform (and assign that transform to the nodes * local transform variable) instead of returning null. * * @return reference to this node's transform */ public PAffineTransform getTransformReference(boolean createNewTransformIfNull) { if (transform == null && createNewTransformIfNull) { transform = new PAffineTransform(); } return transform; } /** * Return an inverted copy of the transform associated with this node. * * @return inverted copy of this node's transform */ public PAffineTransform getInverseTransform() { if (transform == null) { return new PAffineTransform(); } else { try { return new PAffineTransform(transform.createInverse()); } catch (NoninvertibleTransformException e) { e.printStackTrace(); } return null; } } /** * Set the transform applied to this node. * * @param newTransform the new transform value */ public void setTransform(AffineTransform newTransform) { if (newTransform == null) { transform = null; } else { getTransformReference(true).setTransform(newTransform); } invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_TRANSFORM, PROPERTY_TRANSFORM, null, transform); } //**************************************************************** // Paint Damage Management - Methods used to invalidate the areas of // the screen that this node appears in so that they will later get // painted. // // Generally you will not need to call these invalidate methods // when starting out with Piccolo because methods such as setPaint // already automatically call them for you. You will need to call // them when you start creating your own nodes. // // When you do create you own nodes the only method that you will // normally need to call is invalidatePaint. This method marks the // nodes as having invalid paint, the root node's UI cycle will then // later discover this damage and report it to the Java repaint manager. // // Repainting is normally done with PNode.invalidatePaint() instead of // directly calling PNode.repaint() because PNode.repaint() requires // the nodes bounds to be computed right away. But with invalidatePaint // the bounds computation can be delayed until the end of the root's UI // cycle, and this can add up to a bit savings when modifying a // large number of nodes all at once. // // The other methods here will rarely be called except internally // from the framework. //**************************************************************** /** * Return true if this nodes paint is invalid, in which case the node * needs to be repainted. * * @return true if this node needs to be repainted */ public boolean getPaintInvalid() { return paintInvalid; } /** * Mark this node as having invalid paint. If this is set the node * will later be repainted. Node this method is most often * used internally. * * @param paintInvalid true if this node should be repainted */ public void setPaintInvalid(boolean paintInvalid) { this.paintInvalid = paintInvalid; } /** * Return true if this node has a child with invalid paint. * * @return true if this node has a child with invalid paint */ public boolean getChildPaintInvalid() { return childPaintInvalid; } /** * Mark this node as having a child with invalid paint. * * @param childPaintInvalid true if this node has a child with invalid paint */ public void setChildPaintInvalid(boolean childPaintInvalid) { this.childPaintInvalid = childPaintInvalid; } /** * Invalidate this node's paint, and mark all of its ancestors as having a node * with invalid paint. */ public void invalidatePaint() { setPaintInvalid(true); PNode n = parent; while (n != null && !n.getChildPaintInvalid()) { n.setChildPaintInvalid(true); n = n.parent; } if (SCENE_GRAPH_DELEGATE != null) SCENE_GRAPH_DELEGATE.nodePaintInvalidated(this); } /** * Repaint this node and any of its descendents if they have invalid paint. */ public void validateFullPaint() { if (getPaintInvalid()) { repaint(); setPaintInvalid(false); } if (getChildPaintInvalid()) { int count = getChildrenCount(); for (int i = 0; i < count; i++) { PNode each = children.get(i); each.validateFullPaint(); } setChildPaintInvalid(false); } } /** * Mark the area on the screen represented by this nodes full bounds * as needing a repaint. */ public void repaint() { TEMP_REPAINT_BOUNDS.setRect(getFullBoundsReference()); repaintFrom(TEMP_REPAINT_BOUNDS, this); } /** * Pass the given repaint request up the tree, so that any cameras * can invalidate that region on their associated canvas. * * @param localBounds the bounds to repaint * @param childOrThis if childOrThis does not equal this then this nodes transform will be applied to the localBounds param */ public void repaintFrom(PBounds localBounds, PNode childOrThis) { if (parent != null) { if (childOrThis != this) { localToParent(localBounds); } else if (!getVisible()) { return; } parent.repaintFrom(localBounds, this); } } //**************************************************************** // Occluding - Methods to suppor occluding optimization. Not yet // complete. //**************************************************************** public boolean isOpaque(Rectangle2D boundary) { return false; } public boolean getOccluded() { return occluded; } public void setOccluded(boolean isOccluded) { occluded = isOccluded; } //**************************************************************** // Painting - Methods for painting this node and its children // // Painting is how a node defines its visual representation on the // screen, and is done in the local coordinate system of the node. // // The default painting behavior is to first paint the node, and // then paint the node's children on top of the node. If a node // needs wants specialized painting behavior it can override: // // paint() - Painting here will happen before the children // are painted, so the children will be painted on top of painting done // here. // paintAfterChildren() - Painting here will happen after the children // are painted, so it will paint on top of them. // // Note that you should not normally need to override fullPaint(). // // The visible flag can be used to make a node invisible so that // it will never get painted. //**************************************************************** /** * Return true if this node is visible, that is if it will paint itself * and descendents. * * @return true if this node and its descendents are visible. */ public boolean getVisible() { return visible; } /** * Set the visibility of this node and its descendents. * * @param isVisible true if this node and its descendents are visible */ public void setVisible(boolean isVisible) { if (getVisible() != isVisible) { if (!isVisible) repaint(); visible = isVisible; firePropertyChange(PROPERTY_CODE_VISIBLE ,PROPERTY_VISIBLE, null, null); invalidatePaint(); } } /** * Return the paint used to paint this node. This value may be null. */ public Paint getPaint() { return paint; } /** * Set the paint used to paint this node. This value may be set to null. */ public void setPaint(Paint newPaint) { if (paint == newPaint) return; Paint old = paint; paint = newPaint; invalidatePaint(); firePropertyChange(PROPERTY_CODE_PAINT ,PROPERTY_PAINT, old, paint); } /** * Return the transparency used when painting this node. Note that this * transparency is also applied to all of the node's descendents. */ public float getTransparency() { return transparency; } /** * Set the transparency used to paint this node. Note that this transparency * applies to this node and all of its descendents. */ public void setTransparency(float zeroToOne) { if (transparency == zeroToOne) return; transparency = zeroToOne; invalidatePaint(); firePropertyChange(PROPERTY_CODE_TRANSPARENCY, PROPERTY_TRANSPARENCY, null, null); } /** * Paint this node behind any of its children nodes. Subclasses that define * a different appearance should override this method and paint themselves * there. * * @param paintContext the paint context to use for painting the node */ protected void paint(PPaintContext paintContext) { if (paint != null) { Graphics2D g2 = paintContext.getGraphics(); g2.setPaint(paint); g2.fill(getBoundsReference()); } } /** * Paint this node and all of its descendents. Most subclasses do not need to * override this method, they should override <code>paint</code> or * <code>paintAfterChildren</code> instead. * * @param paintContext the paint context to use for painting this node and its children */ public void fullPaint(PPaintContext paintContext) { if (getVisible() && fullIntersects(paintContext.getLocalClip())) { paintContext.pushTransform(transform); paintContext.pushTransparency(transparency); if (!getOccluded()) paint(paintContext); int count = getChildrenCount(); for (int i = 0; i < count; i++) { if (i < children.size()) { // TODO: このチェックはあとで追加した PNode each = children.get(i); each.fullPaint(paintContext); } } paintAfterChildren(paintContext); paintContext.popTransparency(transparency); paintContext.popTransform(transform); } } /** * Subclasses that wish to do additional painting after their children * are painted should override this method and do that painting here. * * @param paintContext the paint context to sue for painting after the children are painted */ protected void paintAfterChildren(PPaintContext paintContext) { } /** * Return a new Image representing this node and all of its children. The image size will * be equal to the size of this nodes full bounds. * * @return a new image representing this node and its descendents */ public Image toImage() { PBounds b = getFullBoundsReference(); return toImage((int) Math.ceil(b.getWidth()), (int) Math.ceil(b.getHeight()), null); } /** * Return a new Image of the requested size representing this * node and all of its children. If backGroundPaint is null the resulting * image will have transparent regions, else those regions will be filled * with the backgroundPaint. * * @param width pixel width of the resulting image * @param height pixel height of the resulting image * @return a new image representing this node and its descendents */ public Image toImage(int width, int height, Paint backGroundPaint) { PBounds imageBounds = getFullBounds(); imageBounds.expandNearestIntegerDimensions(); if(width / imageBounds.width < height / imageBounds.height) { double scale = width / imageBounds.width; height = (int) (imageBounds.height * scale); } else { double scale = height / imageBounds.height; width = (int) (imageBounds.width * scale); } GraphicsConfiguration graphicsConfiguration = GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice().getDefaultConfiguration(); BufferedImage result = graphicsConfiguration.createCompatibleImage(width, height, Transparency.TRANSLUCENT); return toImage(result, backGroundPaint); } /** * Paint a representation of this node into the specified buffered image. If background, * paint is null, then the image will not be filled with a color prior to rendering * * @return a rendering of this image and its descendents into the specified image */ public Image toImage(BufferedImage image, Paint backGroundPaint) { int width = image.getWidth(); int height = image.getHeight(); Graphics2D g2 = image.createGraphics(); if (backGroundPaint != null) { g2.setPaint(backGroundPaint); g2.fillRect(0, 0, width, height); } // reuse print method Paper paper = new Paper(); paper.setSize(width, height); paper.setImageableArea(0, 0, width, height); PageFormat pageFormat = new PageFormat(); pageFormat.setPaper(paper); print(g2, pageFormat, 0); return image; } /** * Constructs a new PrinterJob, allows the user to select which printer * to print to, And then prints the node. */ public void print() { PrinterJob printJob = PrinterJob.getPrinterJob(); PageFormat pageFormat = printJob.defaultPage(); Book book = new Book(); book.append(this, pageFormat); printJob.setPageable(book); if (printJob.printDialog()) { try { printJob.print(); } catch (Exception e) { System.out.println("Error Printing"); e.printStackTrace(); } } } /** * Prints the node into the given Graphics context using the specified * format. The zero based index of the requested page is specified by * pageIndex. If the requested page does not exist then this method returns * NO_SUCH_PAGE; otherwise PAGE_EXISTS is returned. If the printable object * aborts the print job then it throws a PrinterException. * * @param graphics the context into which the node is drawn * @param pageFormat the size and orientation of the page * @param pageIndex the zero based index of the page to be drawn */ public int print(Graphics graphics, PageFormat pageFormat, int pageIndex) { if (pageIndex != 0) { return NO_SUCH_PAGE; } Graphics2D g2 = (Graphics2D)graphics; PBounds imageBounds = getFullBounds(); imageBounds.expandNearestIntegerDimensions(); g2.setClip(0, 0, (int)pageFormat.getWidth(), (int)pageFormat.getHeight()); g2.translate(pageFormat.getImageableX(), pageFormat.getImageableY()); // scale the graphics so node's full bounds fit in the imageable bounds. double scale = pageFormat.getImageableWidth() / imageBounds.getWidth(); if (pageFormat.getImageableHeight() / imageBounds.getHeight() < scale) { scale = pageFormat.getImageableHeight() / imageBounds.getHeight(); } g2.scale(scale, scale); g2.translate(-imageBounds.x, -imageBounds.y); PPaintContext pc = new PPaintContext(g2); pc.setRenderQuality(PPaintContext.HIGH_QUALITY_RENDERING); fullPaint(pc); return PAGE_EXISTS; } //**************************************************************** // Picking - Methods for picking this node and its children. // // Picking is used to determine the node that intersects a point or // rectangle on the screen. It is most frequently used by the // PInputManager to determine the node that the cursor is over. // // The intersects() method is used to determine if a node has // been picked or not. The default implementation just test to see // if the pick bounds intersects the bounds of the node. Subclasses // whose geometry (a circle for example) does not match up exactly with // the bounds should override the intersects() method. // // The default picking behavior is to first try to pick the nodes // children, and then try to pick the nodes own bounds. If a node // wants specialized picking behavior it can override: // // pick() - Pick nodes here that should be picked before the nodes // children are picked. // pickAfterChildren() - Pick nodes here that should be picked after the // node's children are picked. // // Note that fullPick should not normally be overridden. // // The pickable and childrenPickable flags can be used to make a // node or it children not pickable even if their geometry does // intersect the pick bounds. //**************************************************************** /** * Return true if this node is pickable. Only pickable nodes can * receive input events. Nodes are pickable by default. * * @return true if this node is pickable */ public boolean getPickable() { return pickable; } /** * Set the pickable flag for this node. Only pickable nodes can * receive input events. Nodes are pickable by default. * * @param isPickable true if this node is pickable */ public void setPickable(boolean isPickable) { if (getPickable() != isPickable) { pickable = isPickable; firePropertyChange(PROPERTY_CODE_PICKABLE, PROPERTY_PICKABLE, null, null); } } /** * Return true if the children of this node should be picked. If this flag * is false then this node will not try to pick its children. Children * are pickable by default. * * @return true if this node tries to pick its children */ public boolean getChildrenPickable() { return childrenPickable; } /** * Set the children pickable flag. If this flag is false then this * node will not try to pick its children. Children are pickable by * default. * * @param areChildrenPickable true if this node tries to pick its children */ public void setChildrenPickable(boolean areChildrenPickable) { if (getChildrenPickable() != areChildrenPickable) { childrenPickable = areChildrenPickable; firePropertyChange(PROPERTY_CODE_CHILDREN_PICKABLE, PROPERTY_CHILDREN_PICKABLE, null, null); } } /** * Try to pick this node before its children have had a chance to be * picked. Nodes that paint on top of their children may want to override * this method to if the pick path intersects that paint. * * @param pickPath the pick path used for the pick operation * @return true if this node was picked */ protected boolean pick(PPickPath pickPath) { return false; } /** * Try to pick this node and all of its descendents. Most subclasses should not * need to override this method. Instead they should override <code>pick</code> or * <code>pickAfterChildren</code>. * * @param pickPath the pick path to add the node to if its picked * @return true if this node or one of its descendents was picked. */ public boolean fullPick(PPickPath pickPath) { if ((getPickable() || getChildrenPickable()) && fullIntersects(pickPath.getPickBounds())) { pickPath.pushNode(this); pickPath.pushTransform(transform); boolean thisPickable = getPickable() && pickPath.acceptsNode(this); if (thisPickable) { if (pick(pickPath)) { return true; } } if (getChildrenPickable()) { int count = getChildrenCount(); for (int i = count - 1; i >= 0; i--) { PNode each = children.get(i); if (each.fullPick(pickPath)) return true; } } if (thisPickable) { if (pickAfterChildren(pickPath)) { return true; } } pickPath.popTransform(transform); pickPath.popNode(this); } return false; } public void findIntersectingNodes(Rectangle2D fullBounds, ArrayList<PNode> results) { if (fullIntersects(fullBounds)) { Rectangle2D localBounds = parentToLocal((Rectangle2D)fullBounds.clone()); if (intersects(localBounds)) { results.add(this); } int count = getChildrenCount(); for (int i = count - 1; i >= 0; i--) { PNode each = children.get(i); each.findIntersectingNodes(localBounds, results); } } } /** * Try to pick this node after its children have had a chance to be * picked. Most subclasses the define a different geometry will need to * override this method. * * @param pickPath the pick path used for the pick operation * @return true if this node was picked */ protected boolean pickAfterChildren(PPickPath pickPath) { if (intersects(pickPath.getPickBounds())) { return true; } return false; } //**************************************************************** // Structure - Methods for manipulating and traversing the // parent child relationship // // Most of these methods won't need to be overridden by subclasses // but you will use them frequently to build up your node structures. //**************************************************************** /** * Add a node to be a new child of this node. The new node * is added to the end of the list of this node's children. * If child was previously a child of another node, it is * removed from that first. * * @param child the new child to add to this node */ public void addChild(PNode child) { int insertIndex = getChildrenCount(); if (child.parent == this) insertIndex--; addChild(insertIndex, child); } /** * Add a node to be a new child of this node at the specified index. * If child was previously a child of another node, it is removed * from that node first. * * @param child the new child to add to this node */ public void addChild(int index, PNode child) { PNode oldParent = child.getParent(); if (oldParent != null) { oldParent.removeChild(child); } child.setParent(this); getChildrenReference().add(index, child); child.invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_CHILDREN, PROPERTY_CHILDREN, null, children); } /** * Add a collection of nodes to be children of this node. If these nodes * already have parents they will first be removed from those parents. * * @param nodes a collection of nodes to be added to this node */ public void addChildren(Collection<PNode> nodes) { Iterator<PNode> i = nodes.iterator(); while (i.hasNext()) { PNode each = (PNode) i.next(); addChild(each); } } /** * Return true if this node is an ancestor of the parameter node. * * @param node a possible descendent node * @return true if this node is an ancestor of the given node */ public boolean isAncestorOf(PNode node) { PNode p = node.parent; while (p != null) { if (p == this) return true; p = p.parent; } return false; } /** * Return true if this node is a descendent of the parameter node. * * @param node a possible ancestor node * @return true if this nodes descends from the given node */ public boolean isDescendentOf(PNode node) { PNode p = parent; while (p != null) { if (p == node) return true; p = p.parent; } return false; } /** * Return true if this node descends from the root. */ public boolean isDescendentOfRoot() { return getRoot() != null; } /** * Change the order of this node in its parent's children list so that * it will draw in back of all of its other sibling nodes. */ public void moveToBack() { PNode p = parent; if (p != null) { p.removeChild(this); p.addChild(0, this); } } /** * Change the order of this node in its parent's children list so that * it will draw in front of all of its other sibling nodes. */ public void moveInBackOf(PNode sibling) { PNode p = parent; if (p != null && p == sibling.getParent()) { p.removeChild(this); int index = p.indexOfChild(sibling); p.addChild(index, this); } } /** * Change the order of this node in its parent's children list so that * it will draw after the given sibling node. */ public void moveToFront() { PNode p = parent; if (p != null) { p.removeChild(this); p.addChild(this); } } /** * Change the order of this node in its parent's children list so that * it will draw before the given sibling node. */ public void moveInFrontOf(PNode sibling) { PNode p = parent; if (p != null && p == sibling.getParent()) { p.removeChild(this); int index = p.indexOfChild(sibling); p.addChild(index + 1, this); } } /** * Return the parent of this node. This will be null if this node has not been * added to a parent yet. * * @return this nodes parent or null */ public PNode getParent() { return parent; } /** * Set the parent of this node. Note this is set automatically when adding and * removing children. */ public void setParent(PNode newParent) { PNode old = parent; parent = newParent; firePropertyChange(PROPERTY_CODE_PARENT, PROPERTY_PARENT, old, parent); } /** * Return the index where the given child is stored. */ public int indexOfChild(PNode child) { if (children == null) return -1; return children.indexOf(child); } /** * Remove the given child from this node's children list. Any * subsequent children are shifted to the left (one is subtracted * from their indices). The removed child's parent is set to null. * * @param child the child to remove * @return the removed child */ public PNode removeChild(PNode child) { return removeChild(indexOfChild(child)); } /** * Remove the child at the specified position of this group node's children. * Any subsequent children are shifted to the left (one is subtracted from * their indices). The removed child's parent is set to null. * * @param index the index of the child to remove * @return the removed child */ public PNode removeChild(int index) { PNode child = children.remove(index); if (children.size() == 0) { children = null; } child.repaint(); child.setParent(null); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_CHILDREN, PROPERTY_CHILDREN, null, children); return child; } /** * Remove all the children in the given collection from this node's * list of children. All removed nodes will have their parent set to * null. * * @param childrenNodes the collection of children to remove */ public void removeChildren(Collection<PNode> childrenNodes) { Iterator<PNode> i = childrenNodes.iterator(); while (i.hasNext()) { PNode each = (PNode) i.next(); removeChild(each); } } /** * Remove all the children from this node. Node this method is more efficient then * removing each child individually. */ public void removeAllChildren() { if (children != null) { int count = children.size(); for (int i = 0; i < count; i++) { PNode each = children.get(i); each.setParent(null); } children = null; invalidatePaint(); invalidateFullBounds(); firePropertyChange(PROPERTY_CODE_CHILDREN, PROPERTY_CHILDREN, null, children); } } /** * Delete this node by removing it from its parent's list of children. */ public void removeFromParent() { if (parent != null) { parent.removeChild(this); } } /** * Set the parent of this node, and transform the node in such a way that it * doesn't move in global coordinates. * * @param newParent The new parent of this node. */ public void reparent(PNode newParent) { AffineTransform originalTransform = getLocalToGlobalTransform(null); AffineTransform newTransform = newParent.getGlobalToLocalTransform(null); newTransform.concatenate(originalTransform); removeFromParent(); setTransform(newTransform); newParent.addChild(this); computeFullBounds(fullBoundsCache); } /** * Swaps this node out of the scene graph tree, and replaces it with the specified * replacement node. This node is left dangling, and it is up to the caller to * manage it. The replacement node will be added to this node's parent in the same * position as this was. That is, if this was the 3rd child of its parent, then * after calling replaceWith(), the replacement node will also be the 3rd child of its parent. * If this node has no parent when replace is called, then nothing will be done at all. * * @param replacementNode the new node that replaces the current node in the scene graph tree. */ public void replaceWith(PNode replacementNode) { if (parent != null) { PNode p = this.parent; int index = p.getChildrenReference().indexOf(this); p.removeChild(this); p.addChild(index, replacementNode); } } /** * Return the number of children that this node has. * * @return the number of children */ public int getChildrenCount() { if (children == null) { return 0; } return children.size(); } /** * Return the child node at the specified index. * * @param index a child index * @return the child node at the specified index */ public PNode getChild(int index) { return children.get(index); } /** * Return a reference to the list used to manage this node's * children. This list should not be modified. * * @return reference to the children list */ public List<PNode> getChildrenReference() { if (children == null) { children = new ArrayList<PNode>(); } return children; } /** * Return an iterator over this node's direct descendent children. * * @return iterator over this nodes children */ @SuppressWarnings("unchecked") public ListIterator<PNode> getChildrenIterator() { if (children == null) { return (ListIterator<PNode>) Collections.EMPTY_LIST.listIterator(); } return Collections.unmodifiableList(children).listIterator(); } /** * Return the root node (instance of PRoot). If this node does not * descend from a PRoot then null will be returned. */ public PRoot getRoot() { if (parent != null) { return parent.getRoot(); } return null; } /** * Return a collection containing this node and all of its descendent nodes. * * @return a new collection containing this node and all descendents */ public Collection<PNode> getAllNodes() { return getAllNodes(null, null); } /** * Return a collection containing the subset of this node and all of * its descendent nodes that are accepted by the given node filter. If the * filter is null then all nodes will be accepted. If the results parameter * is not null then it will be used to collect this subset instead of * creating a new collection. * * @param filter the filter used to determine the subset * @return a collection containing this node and all descendents */ public Collection<PNode> getAllNodes(PNodeFilter filter, Collection<PNode> results) { if (results == null) results = new ArrayList<PNode>(); if (filter == null || filter.accept(this)) results.add(this); if (filter == null || filter.acceptChildrenOf(this)) { int count = getChildrenCount(); for (int i = 0; i < count; i++) { PNode each = children.get(i); each.getAllNodes(filter, results); } } return results; } //**************************************************************** // Serialization - Nodes conditionally serialize their parent. // This means that only the parents that were unconditionally // (using writeObject) serialized by someone else will be restored // when the node is unserialized. //**************************************************************** /** * Write this node and all of its descendent nodes to the given outputsteam. * This stream must be an instance of PObjectOutputStream or serialization * will fail. This nodes parent is written out conditionally, that is it will * only be written out if someone else writes it out unconditionally. * * @param out the output stream to write to, must be an instance of PObjectOutputStream */ private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); ((PObjectOutputStream)out).writeConditionalObject(parent); } /** * Read this node and all of its descendents in from the given input stream. * * @param in the stream to read from */ private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); parent = (PNode) in.readObject(); } //**************************************************************** // Debugging - methods for debugging //**************************************************************** /** * Returns a string representation of this object for debugging purposes. */ public String toString() { String result = super.toString().replaceAll(".*\\.", ""); return result + "[" + paramString() + "]"; } /** * Returns a string representing the state of this node. This method is * intended to be used only for debugging purposes, and the content and * format of the returned string may vary between implementations. The * returned string may be empty but may not be <code>null</code>. * * @return a string representation of this node's state */ protected String paramString() { StringBuffer result = new StringBuffer(); result.append("bounds=" + (bounds == null ? "null" : bounds.toString())); result.append(",fullBounds=" + (fullBoundsCache == null ? "null" : fullBoundsCache.toString())); result.append(",transform=" + (transform == null ? "null" : transform.toString())); result.append(",paint=" + (paint == null ? "null" : paint.toString())); result.append(",transparency=" + transparency); result.append(",childrenCount=" + getChildrenCount()); if (fullBoundsInvalid) { result.append(",fullBoundsInvalid"); } if (pickable) { result.append(",pickable"); } if (childrenPickable) { result.append(",childrenPickable"); } if (visible) { result.append(",visible"); } return result.toString(); } }